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Entropies of short binary sequences in heart period dynam-
ics. Am J Physiol Heart Circ Physiol 278: H2163-H2172,
2000.— Dynamic aspects of R-R intervals have often been
analyzed by means of linear and nonlinear measures. The
goal of this study was to analyze binary sequences, in which
only the dynamic information is retained, by means of two
different aspects of regularity. R-R interval sequences de-
rived from 24-h electrocardiogram (ECG) recordings of 118
healthy subjects were converted to symbolic binary se-
guences that coded the beat-to-beat increase or decrease in
the R-R interval. Shannon entropy was used to quantify the
occurrence of short binary patterns (length N = 5) in binary
sequences derived from 10-min intervals. The regularity of
the short binary patterns was analyzed on the basis of ap-
proximate entropy (ApEn). ApEn had a linear dependence on
mean R-R interval length, with increasing irregularity occur-
ring at longer R-R interval length. Shannon entropy of the
same sequences showed that the increase in irregularity is
accompanied by a decrease in occurrence of some patterns.
Taken together, these data indicate that irregular binary
patterns are more probable when the mean R-R interval
increases. The use of surrogate data confirmed a nonlinear
component in the binary sequence. Analysis of two consecu-
tive 24-h ECG recordings for each subject demonstrated good
intraindividual reproducibility of the results. In conclusion,
quantification of binary sequences derived from ECG record-
ings reveals properties that cannot be found using the full
information of R-R interval sequences.

heart period dynamics; symbolic dynamics; approximate en-
tropy; Shannon entropy; nonlinear dynamics; surrogate data

IN RECENT YEARS linear measures of heart rate variabil-
ity (HRV) have been applied in a wide range of con-
texts, leading to a well-established diagnostic tool with
more or less accepted standards (16, 17, 30). Today,
HRYV is applied not only in cardiac diseases but in
diseases that generally affect the autonomic nervous
system (ANS). However, the influence of the sympa-
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thetic and parasympathetic branch of the ANS on
linear measures of HRV, as well as the independent
prognostic value of these measures with respect to
high-risk patients with cardiac diseases, is still a mat-
ter of investigation (6, 9, 12). On the other hand,
assessing HRV with nonlinear measures may supply
information different from that of linear measures with
the promise of better risk stratification (13, 32-34).
However, in most cases it is difficult to interpret these
complementary findings in one unifying picture. In this
study we examine the dynamic properties of heart
periods with the use of two different nonlinear ap-
proaches that can be regarded as two complementary
aspects of dynamic properties. The results also shed
new light on the interpretation of power spectral mea-
sures of HRV.

Different approaches lead to nonlinear measures of
HRV. In nonlinear dynamics theory, the so-called state
space is reconstructed from sequences of heartbeat
periods that are generally defined as the time duration
between successive R waves in the electrocardiogram
(ECG), the R-R tachogram. In a second step, the state
space and the dynamic behavior of the reconstructed
dynamics can be quantified (e.g., with measures of
dimension or Lyapunov exponents). For an overview,
see Ref. 10. Practically, the sequences of heart periods
are short, noisy, and often nonstationary. Thus the
application of nonlinear measures to ECG recordings
may lead to spurious indications of chaos (3, 7). How-
ever, one may guardedly say that this approach has
yielded evidence of nonlinearities. Indeed, powerful
guantities for describing heart period dynamics and for
stratification of high-risk patients are still lacking (17).

Another approach to nonlinear measures of HRV is
the quantification of complexity from the point of view
of information theory. To this end, the sequence of
heart periods can be analyzed with the help of entropy
measures such as Shannon entropy or renormalized
entropy (11, 25). These are often used in conjunction
with the concept of symbolic dynamics or coding the-
ory, i.e., reducing the amount of information by trans-
forming the original time series into a symbolic se-
guence with a small set of symbols (8). These measures
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symbolic sequence 1 1 1 0 0 1 1
Fig. 1. E le of fructi " boli differential RR tachogram [ms] +2 +24  +33 -36 -16 +47 +39
ig. 1. Example of construction of symbolic sequences 893 917 950 914 898 945 984
from electrocardiogram (ECG) recordings, keeping the RR tachogram [ms] 891
dynamic aspects. RR, R-R interval. ECG

proved to be useful in detection of patients at high risk
for sudden cardiac death (34). Another entropy mea-
sure for quantification of regularity in a time series is
the approximate entropy (ApEn) (18, 24). ApEn has the
ability to detect subtle differences in heart period dy-
namics that cannot be observed with commonly used
linear measures (14, 15). Recently, the evaluation of
ApEn for R-R tachograms derived from 24-h ECG re-
cordings led to the suggestion of phase transitions, in
the notion of synergetics, between daytime and night-
time heart period dynamics (2). It has also been shown
that changes in fetal heart period complexity during
pregnancy can be documented using ApEn (31).
Though approximate entropy has been introduced for
symbolic dynamics (20), its application to symbolic
dynamics derived from physiological data has not been
performed yet.

The goal of this study was to examine binary se-
guences derived from Holter recordings of healthy sub-
jects to determine their pure dynamic properties. To
this end, a “dynamic” or differential symbolization was
used (1). Such a transformation into binary sequences
is of particular interest because this method extracts
solely dynamic properties of the R-R series, disregard-
ing all information influenced by the absolute values of
the R-R intervals, e.g.,, mean R-R interval, R-R stan-
dard deviation, and other measures of R-R interval
variability. ApEn was used as a nonlinear measure of
irregularity of short binary sequences to quantify their
dynamic properties. Shannon entropy quantifies regu-
larity on a larger scale of the symbolic dynamics under
consideration and thus helped to make the results
more precise. It is still unknown whether binary coding
preserves nonlinear properties of the original R-R ta-
chogram. To test the hypothesis that the binary repre-
sentation of R-R dynamics still contains some impor-
tant nonlinear properties, we made use of surrogate
data. To demonstrate the intraindividual reproducibil-
ity of the binary approximate entropy, two consecutive
24-h ECG recordings for each subject were analyzed.

METHODS

Subjects. The subjects for this study were drawn from a
previous study in which 121 healthy subjects were included
(5). Three subjects were excluded from this analysis because
of missing data. Two consecutively recorded 24-h ECGs
(ECGs A and B) were available for the remaining 118 sub-
jects (age: 20—40 yr, mean = SD: 27 = 6 yr; 78 females). The
24-h ECGs were recorded with Oxford FD3 solid-state record-
ers (Oxford Instruments, Abingdon, UK) with simultaneous
R wave detection and a maximum sampling rate of 1,024 Hz
during the QRS complex. This permitted a maximum reso-
lution of 1 ms for the detection of the R waves. An Oxford
Excel ECG analyzer allowed visual inspection of the auto-

matically detected R waves. Generally, the number of ectopic
or unrecognized beats was small (<1%), and thus such beats
were not replaced or inserted. For further analysis the R
times were written to a binary data file that was exported to
a personal computer for further analysis.

Construction of symbolic sequences. For each 10-min inter-
val in the 24-h ECG (maximum 144 intervals/recording), the
times between subsequent R waves (R-R intervals or heart
periods) formed the corresponding R-R tachogram. Transfor-
mation of each 10-min R-R tachogram into a binary sequence
was done as follows (see Fig. 1): beat-to-beat differences
R-R,,; — R-R, >0, i.e., a decrease in heart rate, were set to
a value of 1, and differences R-R,,; — R-R, = 0, i.e,, an
increase in heart rate, were set to a value of 0. The binary
sequences are quantified by estimation of two different en-
tropies: ApEn and Shannon entropy. Each entropy reveals
different aspects of the binary sequence under consideration:
ApEn is a nonlinear measure of irregularity in a time series
(24), whereas Shannon entropy quantifies the amount of
information in a time series (28).

Approximate entropy. The goal of ApEn is to quantify
irregularity or fluctuations in a time series on the basis of
Kolmogorov-Sinai entropy (21, 23). It quantifies dynamic
aspects of the time series under consideration in a statistical
manner. A short description of the formal implementation of
ApEn follows (for further details, see Refs. 18 and 22).

Given a time series (e.g., R-R tachogram) with N data
points u(l1), u(2), ..., u(N), sequences of vectors x(1), ...,
X(N — m + 1) are formed by defining x(i) = [u(i), u(i + 1),. ..,
u(i + m — 1)]. The parameter m, the number of components
in each vector, has to be fixed. In nonlinear dynamics theory
this would be interpreted as an “m-dimensional state space
reconstruction.” Next the distance d[x(i), x(j)] between two
vectors x(i) and x(j) is defined by the maximum difference of
all their scalar components as

dix(i), ()] = maxc_15 . wllu(i +k—1) —u(j + k= 1)[]
The “correlation sum” of vector x(i) is

no. of j = N — m + 1 such that d[x(i), x(j)]=r
N-m+1

Cih(r) =

The parameter r acts like a filter value: within resolution
r, the numerator counts the number of vectors that are
approximately the same as a given reference vector x(i). The
quantity C{"(r) is called the correlation sum because it quan-
tifies the summed (or global) correlation of vector x(i) with all
other vectors.

Next, the mean logarithmic correlation sum of all vectors
is defined as

N-m+1

1
LG

i=1

log C{"(r)

and ApEn is represented as
ApEn(m, r, N)(u) = ®™(r) — ®™ " (r),
ApEN(0, r, N)(u) = —®(r)

m=1
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ApEn(m, r, N)(u) measures the logarithmic frequency with
which vectors with m components that are close (within
resolution r) remain close when the number of vector compo-
nents is increased by one. This is the key to a measure of
irregularity: small values of ApEn indicate regularity, and
large values imply substantial fluctuations or irregularity in
a time series u.

This concept can also be applied to short binary sequences
or other symbolic dynamics. To understand the notion of
irregularity in binary sequences, consider the sequences
00000, 11111, 01010, and 10110. The first two sequences are
easily identified as very regular sequences. In the third
sequence, the 0’'s and 1's alternate, and thus it is suitable to
call this sequence regular, too. Only the last sequence does
not contain any symmetries or periodically recurring subse-
quences; in other words, this sequence is more irregular. This
concept of irregularity for binary sequences can be quantified
using ApEn.

Formally, if ApEn is applied to binary sequences consist-
ing of 1's and 0O’s, the distance d[x(i), x(j)] will be either 0 or
1. Thus it only makes sense to set the resolution r < 1. To
keep things as easy as possible, we restricted ourselves to
m = 1. Next, the optimal length of binary sequences to be
quantified with ApEn had to be found. As pointed out in Ref.
20, the evaluation of ApEn with m = 1 is based on the
calculation of the frequencies of the subsequences {0, 1, 00,
01, 10, 11} in the binary sequence under consideration. In a
random binary pattern, the longer the binary sequence, the
higher the probability that the subsequences occur with
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almost the same frequency. This would always lead to ap-
proximately the same values of ApEn. Thus short binary
patterns would be better suited to produce ApEn values that
can be distinguished from one another. In this work, we
analyzed very short binary sequences (N = 5), permitting a
good differentiation of the values of ApEn for the distinct
binary patterns. We referred to these very short sequences as
“binary patterns,” distinguishing them from the 10-min “bi-
nary sequences” of heart period dynamics.

To distinguish this use of approximate entropy from the
normal use, we called this quantity “binary approximate
entropy” (BinApEn). Practically, BinApEn was evaluated for
each binary pattern of length N = 5 in the whole binary
sequence generated from the 10-min R-R tachogram. The
average of all BinApEn values was used to quantify heart
period irregularity of the binary patterns.

Shannon entropy. In contrast to BinApEn, Shannon en-
tropy considers the whole binary sequence generated from
the 10-min R-R tachogram. Shannon entropy gives a number
that characterizes the probability that different binary pat-
terns of length N occur. For a very regular binary sequence,
only few distinct patterns occur. Thus Shannon entropy
would be small because the probability for these patterns is
high and only little information is contained in the whole
sequence. For a random binary sequence, all possible pat-
terns of length N occur with the same probability, and the
content of information is maximal. This case is indicated by
maximal values of Shannon entropy.

0.2 L 1 1 1 1

a = 0.441,R=0.84

0.5 0.6 0.7 0.8 0.9 1.0

Mean R-IEI Interval, s

Fig. 2. Example of mean binary approximate entropy
(BinApEnN) of 10-min sequences vs. mean R-R interval
of original (A) and surrogate data (B). Solid line indi-
cates linear regression with slope a. R, Pearson’s cor-
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a=0.250,R=0.80

relation coefficient.
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To formalize this concept, first the probabilities of each
pattern of length N are estimated from the whole binary
sequence (28)

n sy

-,SN): Sy, ...

r‘\)(sla 521 ..
Niot

whereng . isthe number of occurrences of the patterns;,
S,, . . ., Sy and ny, is the total number of patterns. Next, the
entropy estimation S(N) is defined as

1
S(N) ==, >

S1, - -+, SN

rj(slv R SN) IOQZﬁ(Slx R SN)

For a better comparison when using different pattern
lengths N, S(N) is divided by N. Thus the maximal esti-
mation of Shannon entropy is always 1. The properties of
this measure are as follows. If only one binary pattern
occurs in the whole sequence, S(N) = 0. If all 2N patterns
are equally distributed in the sequence, i.e., the probabil-
ity is p = ¥2" for all patterns, and then S(N) = 1. This
means that all N bits are needed to describe the whole
binary sequence properly.

According to the pattern length of the BinApEn algorithm,
a length (i.e., embedding dimension) of N = 5 symbols for the
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subsequences is used. Keeping in mind that each 10-min
interval contains ~800 heartbeats, this guarantees a proper
estimation of the probabilities of all 2° = 32 binary subse-
guences. Deviations from identical distribution of all binary
patterns are observed more easily than for shorter or longer
pattern lengths. This entropy estimation is referred to as
BinShan.

Surrogate data. The properties of binary sequences gener-
ated from heart period dynamics are still unknown. It is not
known whether nonlinear properties can be found in such
binary sequences or whether these can be fully described
with the help of linear methods. In other words, does the
sequence of acceleration and deceleration of heart periods
already contain nonlinearities, or is the nonlinear informa-
tion only revealed if the absolute R-R intervals are taken into
account? To answer this question, we used an iterative
scheme introduced by Schreiber and Schmitz (27) to produce
surrogate data. At the moment, this method seems to be the
best choice of all randomization techniques, preserving al-
most all linear properties of the original time series with
relatively low computational costs. In contrast to other tech-
niques, the iterative scheme not only retains the mean and
the standard deviation (i.e., the distribution) but also main-
tains the power spectrum (i.e., the autocorrelations) of the
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Fig. 4. Distribution of Pearson’s correlation coef-
ficients of mean BinApEn vs. mean R-R interval of
all ECGs evaluated for original (A) and surrogate
data (B).
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original time series (relative error < 0.1%). All other proper-
ties are randomized. Thus the surrogate data cannot be
distinguished from original data with any linear measure of
HRV.

In this study surrogate data were constructed for each
10-min interval of all 24-h ECGs, and in a second step the
binary sequences were generated as described above. If the
binary sequences derived from original data contain nonlin-
ear properties, the estimation of BIinApEn and BinShan
should reveal differences between the original and surrogate
data.

Statistics. Dependencies between two variables were quan-
tified by Pearson’s correlation coefficient (referred to as R to
distinguish it from the parameter r). The dependence be-
tween mean BinApEn versus mean R-R and Shannon en-
tropy versus mean R-R was quantified by the linear regres-
siony = a -+ Xx + b. To test the hypothesis that nonlinear
components are still observable in the binary sequences, the
distribution of differences between original and surrogate
slopes and correlation coefficients was used. The probability
of rejecting the null hypothesis that no difference is observ-
able was calculated with Student’s t-test, and P < 0.05 was
considered statistically significant.

0.8 0.9 1

RESULTS

Approximate entropy. The results for BinApEn of all
236 24-h ECGs were examined visually by plotting
mean BIinApEn against mean R-R interval of each
10-min interval. Figure 2A shows an example. A linear
dependency between mean BinApEn and mean R-R
interval is observable: the longer the R-R interval, the
higher the mean BinApEn and, hence, the more irreg-
ular the binary patterns. The correlation between
mean BinApEn and mean R-R interval yielded R =
0.84. Generally, we found this dependence in all 24-h
ECGs. In Figs. 3A and 4A the distributions of slopes
and correlation coefficients of all ECGs are shown. The
distribution of correlation coefficients has a mean of
R = 0.78, showing strong correlation between mean
BinApEn and mean R-R interval in all ECGs. Thus a
proper evaluation of linear regression was guaranteed.
The distribution of the slopes yielded a mean slope of
a=422x101tst

Next, we evaluated BinApEn for the surrogate data
in a similar fashion. At first glance, the slope of the
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Fig. 5. Example (from same subject as in Fig. 2) of 0.70
binary Shannon entropy (BinShan) of 10-min se- 05
quences vs. mean R-R interval of original (A) and
surrogate data (B). Solid line indicates linear regres-
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linear dependence in Fig. 2B is less steep; a and R are
smaller than those of the original data. However, the
distribution of correlation coefficients as depicted in
Fig. 4B shows that the mean coefficient (R = 0.73) of
the surrogate data is only slightly lower than that of
the original data. The distribution of paired differences
of correlation coefficients between original and surro-
gate data has a mean of 0.05 (P < 0.0001). Thus
surrogate data showed a linear dependence to a
slightly lesser extent, but it is still feasible to evaluate
linear regression slopes. On the other hand, the distri-
bution of slopes of all surrogate data as shown in Fig.
3B revealed a clear reduction of the mean slope (a =
2.88 X 10"t s™1). The distribution of paired differences
of slopes between the original and surrogate data has
its mean at 1.35 X 10~ ! s~ *, showing a clear deviation
from zero mean (P < 0.0001).

We point out that the evaluation of the linear regres-
sion depends on the correlation between mean
BinApEn and mean R-R interval. Consequently, the
decrease of the slope of the linear regression for the
surrogate data is partly due to a decrease in the corre-
lation between mean BinApEn and mean R-R interval.

Shannon entropy. An example of BinShan of 10-min
intervals plotted against mean R-R interval is depicted
in Fig. 5A (data are from same subject as shown in Fig.

1
0.8 0.9 1.0
Mean R-R Interval, s

0.6

0.7

1.1

2). Overall, in all ECGs, as mean R-R interval in-
creased, BinShan decreased. This implies that a
shorter mean R-R interval could be associated with
more equally distributed binary patterns. The distri-
bution of slopes yielded a meanofa = —2.32 x 10 *s™*
(Fig. 6A). The mean value of R (Fig. 7A, R = —0.56)
guaranteed a proper evaluation of linear regression.

For the surrogate data, values of BinShan are gen-
erally increased as shown in Fig. 5B. Thus a less
marked difference between short and long mean R-R
interval was observable, and hence, R is reduced (Fig.
7B, mean R = —0.42). The distribution of slopes was
shifted to higher values (Fig. 6B, mean a = —1.04 X
107t s71). The distribution of paired differences of
slopes showed a clear deviation from zero mean (mean
a=—-128 x 10 *s™! P < 0.0001).

Reproducibility of BinApEn and BinShan. Two con-
secutive 24-h ECGs were available for each subject.
The slopes of linear regression of each subject were
used to estimate the reproducibility. The slopes of ECG
A were plotted against those of ECG B (Fig. 8). Both
entropies yielded strong correlation between the slopes
of both days (BinApEn: R = 0.78; BinShan: R = 0.85).
This implies a good intraindividual reproducibility of
BinApEn and BinShan. Because the slopes showed a
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broad distribution, this result may also imply that each
subject has its specific slope of linear regression.

DISCUSSION

We used binary sequences derived from R-R ta-
chograms of 24-h ECG recordings that retain only basic
dynamic aspects of the R-R tachogram, i.e., the accel-
eration (set to 0) and deceleration (set to 1) of heart-
beat, to estimate approximate and Shannon entropy.
This kind of dynamic symbolization allowed the exam-
ination of stationary as well as many nonstationary
segments because the symbolization of differences be-
tween R-R intervals eliminates nonstationarities re-
sulting from a minor bias underlying the R-R ta-
chogram. We did not calculate entropy estimations
using a static symbolization (e.g., all R-R intervals
above the level of the mean R-R interval were set to 1,
and the others were set to 0). In the literature this kind
of transformation is used to detect so-called “forbidden
words,” i.e., patterns in successive R-R intervals, that
might be of interest in certain cardiac diseases (11,
32-34). In the context of entropy estimations estab-
lished in this study, the latter transformation is not

useful because it often yields long chains of 1's or 0’'s in
nonstationary sequences, resulting in minimal entropy
estimations for BinApEn and BinShan that might be
interpreted spuriously.

The evaluation of mean BIinApEn of each 10-min
interval exhibited two properties: mean BinApEn
strongly correlated with mean R-R interval and was
very reproducible for each subject. Mean BinApEnN
demonstrated that short binary patterns were most
regular at short R-R intervals and displayed more
irregularity with increasing R-R intervals. BinShan
was maximal for shorter R-R intervals, indicating that
all binary patterns occur with almost the same proba-
bility, and was minimal for longer R-R intervals, ex-
hibiting predominance of certain binary patterns that
may result from phase locking with the respiratory
rhythm (see below).

We point out that BinApEn and BinShan deal with
two different notions of regularity. BinApEn quantifies
the regularity of short binary patterns, whereas Bin-
Shan quantifies the regularity of the occurrence of the
binary patterns. Thus the two notions complement
each other.
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Considering only Shannon entropy would lead to the
conclusion that the general behavior of heart period
dynamics seems to be more regular at longer R-R
intervals in the sense that certain binary patterns
predominantly occur, whereas other patterns tend to
disappear. On the other hand, the results of BinApEn
indicate that for long R-R intervals the binary patterns
in heart period dynamics were those with highest ir-
regularity. Combining these findings, we can conclude
that although fewer distinct patterns occurred at
longer R-R intervals, these patterns were precisely
those reflecting greater irregularity. In other words, at
longer R-R intervals irregular patterns of heart period
dynamics appeared more regularly.

Although we did not differentiate between daytime
and nighttime (or sleep stages), we noted that long R-R
intervals are likely to appear at night, whereas short
ones appear during the day. This is shown in Fig. 2, in
which two distinct regions are separated at a mean R-R
interval of ~0.85 s. This leads to the conclusion that at
night, fewer distinct dynamic patterns of the R-R in-
tervals occur more regularly, but the dynamics of these
patterns are more irregular than during the day.

This finding fills the gap between the findings of two
former studies conducted in our laboratory. Using the

-06 -04 -02 0.8 1

Hﬂngﬂﬂnu)mznﬂﬂrm ..

full information of R-R interval lengths for the evalu-
ation of ApEn, we were able to demonstrate that heart
period dynamics are more irregular at night than dur-
ing the day and that the change from day to night or
vice versa is probably accompanied by a phase transi-
tion in the notion of synergetics (i.e., no linear depen-
dence on mean R-R interval length) (2). In a recent
study, we emphasized that at night, cardiac dynamics
reveal a predominance of binary patterns that can be
assigned to distinct frequency ratios or even phase
locking with the respiratory rhythm (e.g., 4:1, 7:2, 5:1)
(1). For example, if 5:1 phase locking is present, the
binary pattern 11001 must occur predominantly and
cyclically recurrent. This predominance was inter-
preted as an increase of heart period regularity and an
augmentation of musical rhythmicity in cardiac dy-
namics. In the present analysis, this pattern was iden-
tified as one of the most irregular patterns, i.e., with
the highest value of BinApEn (20), leading to high
values of mean BinApEn. Thus the predominance of
binary patterns that results from frequency or phase
locking ratios may still lead to strong irregularities
within the binary patterns. We point out that synchro-
nization in physiological systems is most often an in-
termittent phenomenon, detectable during short peri-
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ods of time with changing locking ratios (26, 29). A
further distinction of irregularities between synchro-
nized and nonsynchronized sequences has yet to be
established.

The use of surrogate data resulted in a reduction of
the slopes of the linear regression between mean
BinApEn and mean R-R intervals. For short R-R inter-
vals mean BIinApEn slightly increased, and for long
R-R intervals mean BinApEn slightly decreased. The
values of mean BInApEn of binary sequences gener-
ated from completely random sequences (independent
identical distribution) tend toward a value of ~0.37.
(Note that by construction, purely random sequences
are not maximally irregular in the sense of BinApEn;
see e.g., Ref 19.) This indicates that the randomization
procedure destroyed some inherent nonlinear proper-
ties because the values of mean BinApEn tended to-
ward the stated value even though almost all linear
properties were kept constant. The results for BinShan
of the surrogate data can be interpreted in a similar
fashion. In conclusion, the dynamic properties under
consideration cannot solely be described with linear
methods but also show evidence of nonlinearities.
Moreover, even binary sequences contain nonlinear
properties that cannot be described with measures of
HRYV derived from linear time series analysis.

By focusing on the beat-to-beat acceleration and de-
celeration of heart periods, only fast-modulating

rhythms in heart period dynamics are captured, i.e.,
changes in heart periods due to respiratory sinus ar-
rhythmia (RSA) and other parasympathetic activity.
The effects of slower rhythms that influence the heart
periods, e.g., the blood pressure or slower variations,
can be neglected because they only give rise to a bias
underlying the fastest modulation. These modulations
only affect the symbolization scheme if the bias exceeds
the modulations of the RSA. Hence, our results are
primarily attributed to the vagal activity on the cardiac
system. It is well known that the vagal influence shows
a circadian pattern with an increasing strength at
night (4). This is in accordance with the aforemen-
tioned binary pattern types that occur predominantly
at longer R-R intervals and may indicate frequency or
phase locking between heartbeat and respiration but
that reveal at least certain frequency ratios between
these two interacting systems. Keeping our results in
mind, the interpretation of an HRV power spectrum
can be extended. On one hand, a pronounced modula-
tion of heart periods by RSA causes high power in the
respiratory frequency band. This implies that the heart
periods are modulated more regularly. On the other
hand, the same modulation may result in more irreg-
ular patterns of heart period dynamics, attributing to
an increase of complexity.

Moreover, the entropies of binary heart period dy-
namics turned out to be highly reproducible for each
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subject. This fact supports the findings that each
healthy individual maintains the dynamic properties
of the heart periods over at least two days (1). Further
investigations may show how these properties depend
on age and are affected by cardiovascular and auto-
nomic diseases.

In conclusion, the findings of this study have dem-
onstrated that the binary symbolization of R-R interval
dynamics, which at first glance seems to be an enor-
mous waste of information, gives an important key to a
better understanding of normal heart period regular-
ity. Furthermore, differential binary symbolization
still enables the identification of nonlinear dynamical
properties.
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